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GPS Signals in the Space Service 
Volume (SSV)

• The Terrestrial Service Volume (TSV) is defined as 
the volume of space including the surface of the 
Earth and LEO, i.e., up to 3,000 km

• The Space Service Volume (SSV) is defined as the 
volume of space surrounding the Earth from the 
edge of LEO to GEO, i.e., 3,000 km to 36,000 km 
altitude

• The SSV overlaps and extends beyond the GNSS 
constellations, so use of signals in this region 
often requires signal reception from satellites on 
the opposite side of the Earth – main lobes and 
sidelobes

• Use of GPS in the SSV increasing despite 
geometry, Earth occultation, and weak signal 
strength challenges

• Spacecraft use of GPS in TSV & SSV enables:
• reduced post-maneuver recovery time
• improved operations cadence
• increased satellite autonomy
• more precise real-time navigation and 

timing performance
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High-Altitude GPS

Transition from experimentation to operational use:
• 1990s: Early flight experiments demonstrated basic feasibility – Equator-S, Falcon Gold
• 2000: Reliable GPS orbit determination demonstrated at GEO employing a bent pipe architecture and ground-based 

receiver (Kronman 2000)
• 2001: AMSAT OSCAR-40 mapped GPS main and sidelobe signals (Davis et al. 2001)
• 2015: MMS employed GPS operationally at 76,000 km and recently 150,000 km
• 2016: GOES-16 employed GPS operationally at GEO
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Benefits of Real-Time GPS 
Navigation in the SSV

Benefits of GNSS use in SSV:

• Supports fast trajectory maneuver recovery (from: 5-10 hours to: minutes)
• Significantly improves real-time navigation performance (from: km-class to: meter-class)
• GNSS timing reduces need for expensive on-board clocks (from: $100sK-$1M to: $15K–$50K)
• Supports increased satellite autonomy, lowering mission operations costs (savings up to $500-750K/year)
• Enables new/enhanced capabilities and better performance for High Earth Orbit (HEO) and Geosynchronous Earth 

Orbit (GEO) missions, such as:

Formation Flying, Space Situational 

Awareness, Proximity Operations

Earth Weather Prediction using 

Advanced Weather Satellites

Launch Vehicle Upper Stages 

and Beyond-GEO applications

Space Weather Observations

Precise Position Knowledge

and Control at GEO

Precise Relative Positioning
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Recent Experiences: 
MMS and GOES-16



Recent SSV Experiences: NASA’s 
Magnetospheric MultiScale (MMS) Mission

• Goal: Study the fundamental plasma physics process of 
reconnection in the Earth’s magnetosphere

• Obtains coordinated measurements from tetrahedral 
formation of four spacecraft with scale sizes from 400 km 
to 10 km

• Flying in two highly elliptic orbits in two mission phases 
– Phase 1  1.2x12 RE (magnetopause) Mar ‘14-Feb ‘17
– Phase 2B 1.2x25 RE (magnetotail) May ‘17-present
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Magnetospheric Multi-Scale (MMS) 
• Launched March 12, 2015 
• Four spacecraft form a tetrahedron near 

apogee for performing magnetospheric 
science measurements (space weather)

• Four spacecraft in highly eccentric orbits
– Phase 1: 1.2 x 12 Earth Radii (Re) Orbit 

(7,600 km x 76,000 km)
– Phase 2B: Extends apogee to 25 Re 

(~150,000 km)  (40% of way to Moon)

MMS Navigator System
• GPS enables onboard (autonomous) navigation 

and near autonomous station-keeping
• MMS Navigator system exceeds all expectations
• At the highest point of the MMS orbit Navigator 

set Guinness world record for the highest 
reception of signals and onboard navigation 
solutions by an operational GPS receiver in 
space

• At the lowest point of the MMS orbit Navigator 
set Guinness world for fastest operational GPS 
receiver in space, at velocities over 35,000 km/h

Recent SSV Experiences: 
NASA MMS Mission
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MMS on-orbit Phase 2B results: 
signal tracking

• Consider 8-day period early in Phase 2B
• Above GPS constellation, majority of 

signals are still sidelobes
• Long term trend shows average of ~3 

signals tracked near apogee, with up to 8 
observed.

• Visibility exceeds preflight expectations 
significantly

Signals tracked 

C/N0 vs. time, near apogee
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MMS on-orbit Phase 2B results: 
measurement and navigation performance

• GEONS filter RSS 1-sigma formal errors reach 
maximum of ~50m and briefly 5mm/s 
(typically <1mm/s)

• Measurement residuals are zero mean, of 
expected variation <10m 1-sigma. 

– Suggests sidelobe measurements are of 
high quality.

Filter formal pos/vel errors (1σ root cov) Pseudorange residuals
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Description Requirement Phase 1 Phase 2B

Semi-major axis est. 
under 3 RE (99%)

50 m (Phase 1)
100 m (Phase 2B)

6 m 15 m

Orbit position 
estimation (99%)

100 km RSS 65 m 55 m



GOES-R Series Weather Satellites

• GOES-R, -S, -T, -U: 4th generation
NOAA operational weather satellites

• GOES-R/GOES-16 Launch: 19 Nov 2016
• 15 year life, series operational through mid-

2030s
• Features new CONOPS over previous 

generation:
– Daily low-thrust station-keeping maneuvers, rather than 

annual high-thrust events
– Continuous data collection through maneuvers, <120 

min of outage per year
– Tighter navigation accuracy requirements and faster 

cadence needed to support highly increased operational 
tempo

• Employs on-board GPS at GEO to meet stringent 
navigation requirements

• Utilizes GPS sidelobe signals to increase SSV 
performance and ensure continuous availability

GOES-16 Image of Hurricane Maria Making 
Landfall over Puerto Rico 10



GOES-R/GOES-16 Signal Reception

Source: Winkler, S., Ramsey, G., Frey, C., Chapel, J., Chu, D., Freesland, D., Krimchansky, A., and Concha, M., “GPS 
Receiver On-Orbit Performance for the GOES-R Spacecraft,” ESA GNC 2017, 29 May-2 Jun 2017, Salzburg, Austria.

Earth 
occultation

• GPS L1 C/A 
only

• Receive 
antenna 
designed for 
above-the-
constellation 
use

• Max gain 
@20 deg off-
nadir angle

• Tuned to 
process main 
lobe spillover 
+ first side 
lobe

RX

TX

Antenna patterns
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Edge of SSV 
performance 

spec



GOES-R/GOES-16 In-Flight Performance
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Source: Winkler, S., Ramsey, G., Frey, C., 
Chapel, J., Chu, D., Freesland, D., 
Krimchansky, A., and Concha, M., “GPS 
Receiver On-Orbit Performance for the 
GOES-R Spacecraft,” ESA GNC 2017, 29 
May-2 Jun 2017, Salzburg, Austria.

GPS Visibility
• Minimum SVs visible: 7
• DOP: 5–15
• Major improvement over

guaranteed performance
spec
(4+ SVs visible 1% of time)

Navigation Performance
• 3σ position difference

from smoothed ground
solution (~3m variance):
• Radial: 14.1 m
• In-track: 7.4 m
• Cross-track: 5.1 m

• Compare to requirement:
(100, 75, 75) m
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GOES-16 & MMS SSV Lessons Learned

• Flight data presents real-world snapshot of 
current GPS SSV performance, especially the 
substantial enhancements afforded by side-lobe 
signals 

• Side-lobe signals:
– Shown to significantly improve availability and 

GDOP out to cis-Lunar space
– Substantial enhancement of maneuver recovery 

for vehicles in SSV (graphic) 
– Integrity of signals sufficient enough to enable 

outstanding, real-time navigation out to cis-Lunar 
distances

• Operational use of side-lobe signals is an 
increasing area of interest & multiple operational 
examples are on-orbit and in development

• WG-B team should consider whether beyond 
main-lobe (aggregate) signals should be 
documented and protected to optimize the utility 
of the SSV

MMS response to apogee maneuvers with 
side-lobe signals (blue) and without (red)

Notes:  
1) Blue—flight data
2) Red—simulated data based on flight 

signal availability
3) MMS Phase 1 (70,000 km  apogee)
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SSV: Future Civil Applications



SSV: Future Civil Applications
• Earth Weather Missions

– Objectives:  Improve weather forecasting from 3-5 days to 5-7 days; protecting people and property through 
early warning of tornados, flash floods, and wildfires

– Role of the SSV:  Accurate orbit prediction (position and velocity), fast recovery from trajectory maneuvers, 
navigation stability to prevent internal image and image to image pixel, and timing

• Space Weather and Heliospheric Science Missions
– Objectives:  Enable High Earth Orbit and Cislunar observations of the magnetosphere to improve 

understanding of space weather and to potentially start space weather prediction.
– Role of the SSV: Improved navigation performance (e.g. 10-meter to 1-meter class) and fast recovery from 

trajectory maneuvers (minute class) for accurate placement of space weather phenomenon; improved 
operations cadence and increased satellite autonomy to support constellation or formation flying missions; 
Precise timing enabling lower cost clock alternatives

15

Aurora from ISS [1]



SSV: Future Civil Applications 
(cont.)

• Satellite Servicing
– Objectives: Extend the lives of satellites through upgrade, repair, 

refueling, and orbit adjustment; debris removal; in-orbit 
construction or installation

– Role of the SSV: 
• Fast recovery from trajectory maneuvers required—on the order of 

minutes during critical rendezvous, proximity operations, and docking
• Near-continuous GPS signal availability needed to support satellite 

responsiveness and autonomy
• Highly accurate absolute orbit state (position and velocity) are 

necessary to support far-field rendezvous—as a general rule of thumb, 
position must be known to an accuracy of 10% the inter-vehicle range 

• Formation Flying Missions
– Objectives:  Enable new classes of missions and new scientific 

viewpoints through formation flying; spans full spectrum of vehicle 
sizes (CubeSats to ISS class) and mission orbits (MEO, HEO, GEO, 
Cislunar. 

– Role of the SSV: Precise navigation and timing, fast recovery from 
trajectory maneuvers, enhanced operations cadence, and 
increased satellite autonomy.  Requirements as low as meter-class 
navigation in real time, cm-level relative navigation and micro- to 
nanosecond timing synchronization. 
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Restore-L satellite servicing mission [2]

MMS formation flying [3]



SSV: Future Civil Applications 
(cont.)

• Commercial GEO Missions
– Objectives:  Densify most coveted real estate in space, benefiting commercial and civil space users
– Role of the SSV:  Accurate position and velocity measurements and near-continuous GPS signal availability 

needed to enable accurate, autonomous vehicle station keeping during near-continuous low thrust maneuvering 

• Launch Vehicle Upper Stages & Deep Space Missions, En Route, and Return
– Objectives:  Improve real-time vehicle insertion and trajectory accuracy reducing fuel requirements and 

improving payload mass capacities
– Role of the SSV:  High accuracy, high cadence position, velocity, and time knowledge to minimize the trajectory 

propagation errors of the vehicle during flight

17

Space Launch System (SLS) [4]



SSV: Future Civil Applications 
(cont.)

• Lunar Missions
– Objectives: There is a renewed interest in the moon as a target for rovers, landers, and human exploration. The 

US plans to return to human exploration of the moon and cislunar space in the next few years with Exploration 
Missions (EM) 1 and 2. EM-3 may begin construction of a “gateway”—a permanent way-station in the vicinity of 
the moon for staging deep space activity

– Role of the SSV:
• GPS can provide measurements for mid-course correction burns during outbound and return cruise
• Simulations have shown that GPS signal availability can be extended to lunar distances by augmenting existing high-altitude 

GPS navigation systems (such as MMS) with a high-gain antenna (Winternitz et al. 2017, Ashman et al., 2018)
• Navigation backup for the crew capsule, Orion, if communications link is lost
• Lunar platform like the gateway could use GPS for position, velocity, and attitude, as well as a stable and accurate timing 

source for hosted science and technology payloads 
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Lunar horizon from Apollo 8 [5]
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Next Generation SSV



Next Generation SSV

• Current capability status:
– High-altitude GPS (and GLONASS) is currently being used operationally by multiple international 

users

– SSV utilizing main-lobe signal to 23.5deg off-boresight angle is formal part of GPS requirements

– Current SSV users are using GPS sidelobe signals as well to drastically increase signal availability and 
navigation performance

– Meter-class position knowledge and continuous availability at GEO; <100 m at 40% lunar distance

• Paths forward for next-generation SSV capability:
– Evolution of existing GPS SSV: What on-orbit capability will GPS Block III provide?

– Multi-GNSS SSV
• All providers are collaborating under United Nations International Committee on GNSS on combined 

constellation performance expectations publication (summer/fall 2018)

• Document will focus on main-lobe SSV contributions, and will represent expectations, not specifications

• Combined performance likely to reach 100% availability at GEO using only main-lobe signals

– Expansion of SSV concept to include augmentations:
• Specification of sidelobe signals for all constellations

• Utilization of ranging signals on intersatellite links (cross-links) or existing augmentations (WAAS/EGNOS)

• Possible design of future SSV-specific augmentations – terrestrial or planetary beacons, SSV-specific 
transmitters at Lagrance points, etc.
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Conclusions

• GPS has become routine for spacecraft navigation in LEO

• High-altitude GPS utilization has reached turning point since its first demonstration in late 
1990s
– First US operational users, MMS and GOES-R, are expanding knowledge of what is possible in the SSV

• The SSV concept is continually evolving – multiple avenues exist for expansion and 
formalization in the future to support future mission needs.

• To support this growth, the community must ensure that:
1. The existing SSV capability is protected and improved

2. All GNSS providers cooperate fully on the expansion to Multi-GNSS SSV

3. Receiver developers continue development of innovative high-altitude spacecraft receivers, including ultra-weak 
signal tracking and high-altitude onboard precise orbit determination.

4. High-altitude users continue to take advantage of the SSV to demonstration next-generation mission benefits
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Image Sources

1. https://scitechdaily.com/new-iss-image-of-the-
pacific-northwest-and-an-aurora/

2. https://www.aerospace-
technology.com/news/restore-l-satellite-
servicing-mission-passes-nasa-design-review/

3. https://eoportal.org/web/eoportal/satellite-
missions/content/-/article/mms-observatory

4. https://www.nasaspaceflight.com/2016/09/nasa-
sls-block-1b-universal-stage-adapter/

5. https://www.flickr.com/photos/projectapolloarch
ive/21764833108/in/album-
72157659453355752/
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• Trade vs. Ground OD (2005)

– Estimated >$2.4M lifecycle savings over ground-based OD
– Enhanced flexibility wrt maneuver support
– Quicker return to science after maneuvers

• Main challenge #1: Sparse, weak, poorly characterized signal environment

– MMS Navigator acquires and tracks below 25dB-Hz (around -178dBW)
– GEONS navigation filter runs embedded on the Navigator processor 
– Ultra stable crystal oscillator (Freq. Electronics, Inc.) supports filter propagation

• Main challenge #2: Spacecraft are spin stabilized at 3 rpm with obstructions on top 
and bottom of spacecraft

– Four GPS antennas with independent front end electronics placed around perimeter 
achieve full sky coverage with low noise

– Receiver designed to hand off from one antenna to next every 5s

• MMS baselined GSFC Navigator + GEONS Orbit 
Determination (OD) filter software as sole means of 
navigation (mid 2000’s)

̶ Original design included crosslink, later descoped

MMS Navigation
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MMS Navigator GPS Hardware

• GPS hardware all developed and tested at GSFC. Altogether, 8 electronics 
boxes, 8 USOs, 32 antennas and front ends.



• Once powered, receiver began acquiring weak 
signals and forming point solutions

• Long term trend shows average of >8 signals 
tracked above 8RE

• Above GPS constellation, vast majority of these 
are sidelobe signals

• Visibility exceeded preflight expectations
Signals tracked during first few orbits

Signal to noise vs. time

Phase 1 Performance: Signal Tracking
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Phase 1 Results: Measurement and 
Navigation Performance

• GEONS filter RSS 1-sigma formal errors reach 
maximum of 12m and 3mm/s (typically <1mm/s)

• Although geometry becomes seriously degraded at 
apogee, point solutions almost continuously 
available 

• Measurement residuals are zero mean, of 
expected variation. Suggests sidelobe
measurements are of high quality.
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Phase 3 Lunar Case

Mission Simplified lunar transfer, 
similar to Apollo 11, 

Exploration Mission 1 (EM-1)

Description Free-return lunar trajectory 
with optional lunar orbit  and 

return phases

Earth Periapsis 185 km alt

Moon Periapsis 100 km alt
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Earth Inclination 32°

Duration 4 days

Attitude profile Nadir-pointing

Receive 
antennas

Patch (zenith) + High-gain 
(nadir)

Status:
• NASA is lead for lunar case
• Specification complete
• NASA/ESA have completed 

implementation
• ESA comparing results



Phase 3 Lunar Case Results
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• Metrics (same as HEO and GEO cases):
– C/N0, SV visibility over time/distance, Position Dilution of Precision (PDOP)
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C/N0 Over Distance


